J-Aggregation of Zinc 3¹,13¹-Dihydroxychlorins by Exclusive Coordination Bonding between 3¹-Hydroxy Group and Central Zinc Atom

Michio Kunieda and Hitoshi Tamiaki*

Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577

(Received March 29, 2010; CL-100296; E-mail: tamiaki@se.ritsumei.ac.jp)

Zinc 3^1 , 13^1 -dihydroxychlorin lacking an exo-five-membered E-ring was prepared as a model of natural bacteriochlorophyll-*d* possessing 3^1 -OH and 13-C=O groups. The synthetic zinc complex has the 13-CH₂OH instead of the 13-C=O and selfaggregated in a nonpolar organic solvent, giving slipped and π overlapped molecular stackings (J-aggregates) with red-shifted and broadened electronic absorption bands. For the intermolecular interactions among the J-aggregates, coordination bonding of the 3^1 -OH (not 13^1 -OH) with the central Zn was utilized.

We have reported a series of synthetic chlorophyllous pigments which have potential to form J-aggregates by intermolecular coordination (3¹-O...M), hydrogen bonding (3¹-O-H-O=C-13), and π - π stacking of their cyclic tetrapyrrolic π -systems.¹⁻³ Molecular structures of the self-aggregative chlorophylls were designed from natural bacteriochlorophyll(BChl)s-c/d/e possessing 3¹-OH, central coordinative Mg and 13-C=O moieties in a straight (y axis) line (see upper of Figure 1 for BChls-c and -d), which self-aggregated to form excitonically well-delocalized J-aggregates in the light-harvesting antenna systems (chlorosomes) of green photosynthetic bacteria by use of the above intermolecular connections. Structural requirements for such chlorosomal J-aggregation are the above three moieties on a tetrapyrrolic macrocycle in the yaxis, and these characters were present in a simple and stable model 1 (lower left of Figure 1).⁴

Removal of one of them resulted in no formation of J-aggregates,⁴ but slight chemical modifications were acceptable. Substitution of the 3-C–OH with 3-C=O (CHO or COCH₃) led to little chlorosomal J-aggregation,⁵ but zinc 3-methoxymethyl-chlorin was useful for chlorosomal J-aggregation because the oxygen atom of the methoxy group could coordinate to the central zinc of another molecule as did the hydroxy group in BChls and 1.^{6,7}

For another interaction site, the 13-keto-C=O group, various chemical modifications have been reported and have shown that ester,^{8,9} imide,¹⁰ anhydride,^{9,10} and formyl groups,¹¹ all of which have the conjugated C=O group, could be alternatives to the original keto group for making J-aggregates. As mentioned above, removal of the 13-C=O group in zinc chlorin as in **2** (lower left of Figure 1) did not show any aggregated species in a nonpolar organic solvent, because the 13¹-oxo group connected the stepwise linear aggregates up to three-dimensional by a hydrogen-bonding network. As an alternative hydrogen bonding acceptor, the oxygen atom of the 13¹-OH had been preliminarily examined by Smith and his colleagues,¹² conversion of Mg to Zn and reduction of the 13-C=O group in the extracted BChls-*c* gave 3¹,13¹-epimeric and 8,12-homologous mixtures of Zn–13-CHOH-BChls-*c* which still

Figure 1. Molecular structures of natural BChls-*c* and -*d*, and synthetic zinc chlorins **1–4**.

showed similar J-aggregated species. However, self-aggregation of structurally confirmed model compounds possessing the 3^{1} , 13^{1} -dihydroxy groups had not yet been examined in detail. Here we report self-aggregation properties of synthetic zinc 3^{1} , 13^{1} -dihydroxychlorins **3** and **4** (lower of Figure 1) in a nonpolar organic solvent and clarify which OH group in dihydroxychlorins was useful for the coordination with the central Zn in a supramolecule.

First, we examined the self-aggregation behavior of 13^{1} -OH-chlorin **3** possessing the E-ring, which was easily prepared by reduction of the 13-C=O group in **1** with NaBH₄.¹³ UV-vis and CD spectra of **3** were measured in polar (THF) and nonpolar $(1\% \text{ v/v CH}_2\text{Cl}_2/\text{hexane})$ organic solvents. A THF solution of **3** showed two intense absorption bands at 408 and 620 nm as Soret and Q_y maxima (dotted line in Figure 2A) and showed small positive and negative CD signals at the Soret and Q_y regions (dotted line in Figure 2B), indicating **3** to be monomeric. In contrast, **3** in $1\% \text{ v/v CH}_2\text{Cl}_2/\text{hexane}$ gave Soret and Q_y absorption bands at 445 and 667 nm (solid line in Figure 2A), which were shifted to a longer wavelength region than residual

Figure 2. UV–vis (A/C) and CD spectra (B/D) of **3/4** (upper/lower) in THF (dotted lines) and $1\% \text{ v/v } \text{CH}_2\text{Cl}_2/\text{hexane}$ (solid lines). Asterisks in A/C indicate absorption bands derived from the residual monomeric species. Concentrations of all the samples were ca. $10 \,\mu\text{M}$.

monomeric peaks (* shown in Figure 2A). Intense CD signals around the newly appeared peaks, a typical sign of the strong exciton coupling, were also observed (solid line in Figure 2B), showing that $Zn-3^1,13^1$ -OH-3 self-aggregated in the hydrophobic environment in a J-aggregated fashion. Red-shift values by self-aggregation of 1 and 3 were 2000 and 1140 cm⁻¹, respectively, suggesting that aggregation number in the supra-molecule of 3 would be less than that of 1.

Zn- 3^1 ,1 3^1 -OH-4 was prepared in a similar manner to the synthesis of the corresponding methyl ester;¹¹ the methyl ester in 3,13-diformylchlorin was transesterified^{14,15} to the corresponding octadecyl ester, and reduction of both the 3,13-diformyl groups with NaBH₄ followed by zinc insertion afforded zinc complex 4.¹⁶ Introduction of a longer oligomethylene chain increased the solubility of synthetic chlorophylls,^{17,18} whose self-aggregates were successfully examined by solution-state ¹H NMR spectroscopy.

Figure 3. ¹H NMR spectra of **4** in CDCl₃ (A) and 3% v/v pyridine- d_5/CDCl_3 (B). Inset (C) showed UV–vis spectrum of **4** in CDCl₃ measured with 0.1-mm cell. Concentrations of all the samples were ca. 5 mM.

UV–vis and CD spectra of **4** in THF (a blue-colored solution) were characteristic of monomeric zinc chlorin (dotted lines in Figures 2C and 2D): Soret and Q_y bands at 404 and 618 nm with small positive and negative CD bands. UV–vis and CD spectra of **4** in nonpolar organic solvent (a green-colored solution) showed red-shifted and broadened Soret/ Q_y bands and intense CD couplets (solid lines in Figures 2C and 2D), ascribable to J-aggregation of **4**. The red-shift value of Q_y maximum by self-aggregation of **4** was 1230 cm^{-1} , which was comparable to that of **3**.

¹HNMR spectra of **4** in CDCl₃ and 3% v/v pyridine- $d_5/$ CDCl₃ (5 mM) were measured to confirm how a composite molecule associated with another molecule in a supramolecule (Figure 3). The colors of the former and latter solutions were green and blue, respectively, indicating that zinc chlorin 4 could intermolecularly interact in the concentrated CDCl₃ without pyridine- d_5 and that addition of 3% v/v pyridine- d_5 changed 4 to monomeric as in THF. UV-vis spectrum of 4 in CDCl₃ gave two Q_v bands at 625 and 664 nm (Figure 3C), whose positions were due to the monomer and oligomer as shown in Figure 2C. The ¹HNMR spectrum of 4 in 3% v/v pyridine- d_5 /CDCl₃ (Figure 3B) was characteristic of a monomeric zinc complex: four meso-protons (5,10,15,20-H) appeared at a low field (8.5-10 ppm) and two CH₂OH were obtained at 5.9 and 5.8 ppm. Compared to the monomeric spectrum, high-field shifts were observed in the signals (near the 3^1 -position) of 4 in CDCl₃ (Figure 3A): 5-H (9.7 \rightarrow 8.9 ppm), 3-CH₂ (5.9 \rightarrow 5.0 ppm), and 2-CH₃ (3.4 \rightarrow 2.8 ppm) (three solid arrows in Figure 3). These shifts were ascribable to intermolecular overlapping of these protons over another chlorin π -system through 3¹-O...Zn coordination. Minimal shifts were observed at around the 13-CH₂OH (dotted arrows in Figure 3). Two proton signals of 3-CH₂ of **4** in CDCl₃ (5 ppm in Figure 3A) were not equivalent, indicating that the rotation around the C3-C3¹ was restricted, probably because of coordination bonding between 3¹-OH and Zn. Two Q_v bands were observed in the UV-vis spectrum as described above, but ¹H NMR spectrum of the solution afforded a single species, showing that the equilibrium between association (to oligomer) and dissociation (to monomer) occurred rapidly in solution. These results clearly indicated that the 3^{1} -OH group in **4** exclusively coordinated to a central Zn atom of another molecule in the aggregates: coordination ability of the 13-CH₂OH group was less than that of the 3-CH₂OH. Zn– 3^{1} -OH-1 3^{1} -H₂-chlorin **2** gave no J-aggregated species, suggesting that the 13^{1} -OH in **4** (**3**) was significantly important and should intermolecularly interact.

To clarify the reason why the 13^{1} -OH in 4 could not coordinate, FT-IR spectroscopy was examined. The FT-IR spectrum of 4 in THF gave 17^{2} -C=O stretching at 1736 cm^{-1} , but that in CDCl₃ (5 mM) showed a 17^{2} -C=O signal at 1723 cm^{-1} , which was down-shifted by 13 cm^{-1} . The shift was ascribed to intramolecular hydrogen bonding between the 17^{2} -C=O with 13^{1} -OH, which had been observed in Zn–3-C=O- 13^{1} -OH-chlorin in a previous report.¹¹

In conclusion, $Zn-3^1,13^1$ -OH-chlorins **3** and **4** self-aggregated in a nonpolar organic solvent, similarly to $Zn-3^1$ -OH-13-C=O-chlorin **1**. Self-aggregates of **3** possessing secondary 13^1 -OH showed a large amount of the residual monomeric species, due to its steric hindrance and inflexibility. Compound **4** possessing two primary alcoholic OH groups self-aggregated more stably, and a clear distinction was observed between the roles of 3^1 - and 13^1 -OH groups; intermolecular coordination bonding was preferentially formed by 3^1 -OH and Zn, and intramolecular hydrogen bonding of 13^1 -OH with 17^2 -C=O was favorable. Additional intermolecular hydrogen bonding of 13^1 -O with 3^1 -OH and/or 13^1 -OH with 3^1 -O was necessary for chlorosomal J-aggregation.

This work was partially supported by Grant-in-Aid for Scientific Research (A) (No. 22245030) from the Japan Society for the Promotion of Science (JSPS). MS spectra were measured with the helpful assistance of Dr. Tomohiro Miyatake of Ryukoku University.

References and Notes

- 1 T. Miyatake, H. Tamiaki, J. Photochem. Photobiol., C 2005, 6, 89.
- 2 H. Tamiaki, R. Shibata, T. Mizoguchi, *Photochem. Photo-biol.* 2007, 83, 152.
- 3 H. Tamiaki, Y. Kotegawa, S. Nitta, S. Sasaki, K. Mizutani, *Tetrahedron* **2009**, *65*, 628.
- 4 H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, K. Schaffner, *Photochem. Photobiol.* **1996**, *63*,

92.

- 5 H. Tamiaki, T. Miyatake, R. Tanikaga, *Tetrahedron Lett.* 1997, 38, 267.
- 6 T. Miyatake, S. Tanigawa, S. Kato, H. Tamiaki, *Tetrahedron Lett.* 2007, 48, 2251.
- 7 S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, H. J. M. de Groot, *Proc. Natl. Acad. Sci. U.S.A.* 2009, *106*, 11472.
- 8 M. Kunieda, H. Tamiaki, Eur. J. Org. Chem. 2006, 2352.
- 9 H. Tamiaki, H. Yoshimura, Y. Shimamura, M. Kunieda, *Photosynth. Res.* **2008**, *95*, 223.
- H. Tamiaki, Y. Shimamura, H. Yoshimura, S. K. Pandey, R. K. Pandey, *Chem. Lett.* 2005, 34, 1344.
- 11 M. Kunieda, H. Tamiaki, J. Org. Chem. 2007, 72, 2443.
- 12 K. M. Smith, L. A. Kehres, J. Fajer, J. Am. Chem. Soc. 1983, 105, 1387.
- 13 The 13-C=O group in **1** was reduced according to the reported procedure described in Ref. 5 to give a 1:1.4 13¹Sand 13¹*R*-epimeric mixture of **3** in a quantitative yield. We used the epimeric mixture of **3** because HPLC-separated pure samples did not show any significant difference in either the monomeric or oligomeric state. Data for **3**: λ_{max} (THF), nm: 620 (rel., 0.25), 573 (0.03), 509 (0.03), and 408 (1.00); HRMS (FAB) *m*/*z*: 616.2037 (M⁺), calcd for C₃₃H₃₆N₄O₄Zn 616.2028.
- 14 S. Sasaki, T. Mizoguchi, H. Tamiaki, J. Org. Chem. 2007, 72, 4566.
- 15 H. Tamiaki, T. Michitsuji, R. Shibata, *Photochem. Photobiol. Sci.* 2008, 7, 1225.
- 16 λ_{max} (THF), nm: 618 (rel., 0.31), 573 (0.05), 506 (0.03), and 404 (1.00); ¹H NMR (600 MHz; 3% v/v pyridine- d_5 /CDCl₃) δ 9.67 (1H, s, 5-H), 9.59 (1H, s, 10-H), 8.73 (1H, s, 15-H), 8.57 (1H, s, 20-H), 5.94 (2H, s, 3-CH₂), 5.84, 5.82 (each 1H, d, J = 12 Hz, 13-CH₂), 4.46 (1H, m, 18-H), 4.39 (1H, m, 17-H), 3.90 (2H, m, COOCH₂), 3.84 (2H, q, J = 8 Hz, 8-CH₂), 3.52 (3H, s, 12-CH₃), 3.41 (3H, s, 2-CH₃), 3.37 (3H, s, 7-CH₃), 2.88 (2H, br, OH × 2), 2.60, 2.44, 2.11 (1H + 2H + 1H, m, 17-CH₂CH₂), 1.78 (3H, d, J = 8 Hz, 18-CH₃), 1.72 (3H, t, J = 8 Hz, 8¹-CH₃), 1.41 (2H, m, COOCCH₂), 1.31-1.13 (30H, m, COOCCC1₅H₃₀), 0.87 (3H, t, J = 8 Hz, COOC₁₇CH₃); MS (FAB) m/z: 842 (M⁺), calcd for C₄₉H₇₀N₄O₄Zn 842.
- 17 P. Hildebrandt, H. Tamiaki, A. R. Holzwarth, K. Schaffner, J. Phys. Chem. 1994, 98, 2192.
- 18 V. Huber, M. Katterle, M. Lysetska, F. Würthner, Angew. Chem., Int. Ed. 2005, 44, 3147.